USING MESOSCALE ATMOSPHERIC MODEL OUTPUT AS A TOOL IN DECISION MAKING

PETER Q. OLSSON

ALASKA STATE CLIMATOLOGIST, ALASKA STATE CLIMATE CENTER (ASCC)

CHIEF SCIENTIST,

Contract Contraction of the

KA EXPERIMENTAL FOREGAST FAGILITY (AEFF)

Photo courtesy Gary Williams Photography

NOAA's *National Centers for Environmental Prediction (NCEP)* runs several forecast models daily

Why do something special here, especially when NCEP does a pretty good job?

The main reason is scale. NCEP models have a MUCH LARGER foot print, typically the CONUS. This mission typically requires:

- Larger grid spacing
- Physical parameterizations that must work suitably across very different weather conditions
- Graphics with inherently less detail

Hand Drawn NWS analysis

12/08/16 12UTC 001HR FCST VALID THU 12/08/16 13UTC NCEP/NWS/NDAA

At the AEFF, we use a different, complementary approach with the PWS-WRF* model

We "nest" our model domain within a "host model"— usually the NCEP Global Forecast System (GFS). Our domain (below) is restricted to Cook Inlet and PWS writ large.

* Weather Research and Forecasting (WRF)

The host model provides *lateral inflow and outflow BCs* at every time step.

The host model also provides the *initial starting conditions*.

The model is rerun for the forecast period, using highresolution topography, model physics and a grid geometry specially suited to the North GOA

AEFF PWS-WRF Southcentral Alaska Domain

Primitive Equations for Dry, Inviscid Motion

(1)
$$\frac{\partial u}{\partial t} + U \times \nabla u - 2 W v \sin j = -\frac{1}{r} \frac{\partial p}{\partial x}$$

(2) $\frac{\partial v}{\partial t} + U \times \nabla v + 2 W u \sin j = -\frac{1}{r} \frac{\partial p}{\partial y}$

(3)
$$\frac{\partial w}{\partial t} + U \times \nabla w = -\frac{1}{r} \frac{\partial p}{\partial y} - \frac{1}{r} \frac{\partial p}{\partial y}$$

(4)
$$C_p \frac{DT}{Dt} + p \frac{Dr^{-1}}{Dt} = J$$

(5) $\frac{1}{\Gamma} \frac{D\Gamma}{Dt} + \nabla \times \mathbf{U} = 0$

(6) P = rRT

Six highly-coupled PDEs (5 prognostic and one diagnostic) in six unknowns (u,v,w,P,T,ρ)

Given suitable *INITIAL* conditions and *BOUNDARY* conditions, we can (in theory) solve these for any future time.

Of course, the <u>highly nonlinear nature</u> of the equations means <u>CHAOS</u> is just a few days away.

The Details

The model is run four times a day, at 00, 06, 12 and 18 UTC

A subdomain of the full PWS-WRF domain— the PWS region is delineated and plots are created and (will soon be) placed on the PWS-WRF website.

Currently we are plotting two products on an hourly basis: surface winds and an experimental visibility plot. We want to hear more from you, the users, about what else would be useful.

And now for some plots...

So... how well does PWS-WRF do for longer times?

Forecast one day out

Forecast two days out

Pretty fair, if general agreement with more contemporary forecasts is any measure...

That's all for now!

All feedback is welcome: pqolsson@alaska.edu

Big whirls have little whirls that feed on their velocity And little whirls have lesser whirls and so on to v Lewis Fry Richardson